Part Number Hot Search : 
M57917L F1007 40138 40138 277M00 H432AA F1007 UGSP05F
Product Description
Full Text Search
 

To Download SH81I Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TSH80-TSH81-TSH82
Wide Band, Rail-to-Rail Operational Amplifier with Standby Function

4.5V, 12V operating conditions 3dB-bandwidth: 100MHz Slew-rate: 100V/s Output current: up to 55mA Input single supply voltage Output rail-to-rail Specified for 150 load Low distortion, THD: 0.1% SOT23-5, TSSOP and SO packages D SO-8 (Plastic Micro package) L SOT23-5 (Plastic Micro package)
Description
The TSH8x series offers single and dual operational amplifiers featuring high video performances with large bandwidth, low distortion and excellent supply voltage rejection. These amplifiers feature also large output voltage swing and high output current capability to drive standard 150 loads. Running at single or dual supply voltage from 4.5V to 12V, these amplifiers are tested at 5V(2.5V) and 10V(5V) supplies. The TSH81 also features a standby mode, which allows the operational amplifier to be put into a standby mode with low power consumption and high output impedance.The function allows power saving or signals switching/multiplexing for high speed applications and video applications. For board space and weight saving, TSH8x series is proposed in SOT23-5, TSSOP8 and SO-8 packages.
P TSSOP8 (Plastic Micro package)
Pin Connections (top view)
TSH80 : SOT23-5/SO8
Output 1 VCC - 2 Non-Inv. In. 3 5 VCC + NC 1 Inv. In. 2 4 Inv. In. Non-Inv. In. 3 VCC - 4 _ + 8 NC 7 VCC + 6 Output 5 NC
+-
TSH81 : SO8/TSSOP8
NC 1 Inverting Input 2 Non Inverting Input 3 VCC - 4 _ + 8 STANDBY 7 VCC + 6 Output 5 NC
Application

TSH82 : SO8/TSSOP8
Output1 1 Inverting Input1 2 Non Inverting Input1 3 VCC - 4 _ + _ + 8 VCC + 7 Output2 6 Inverting Input2 5 Non Inverting Input2
Video buffers A/D converters driver Hi-Fi applications
August 2005
Rev 2 1/23
www.st.com
23
TSH80-TSH81-TSH82
Order Codes
Type TSH80ILT TSH80IYLT TSH80ID/DT TSH80IYD/IYDT TSH81ID/DT TSH81IPT -40C to +85C TSH82ID/DT TSH82IPT TSH82IYD/ITDT -40C to +125C SO-8 TSSOP8 SO-8 (automotive grade level) Tube or Tape & Reel Tape & Reel Tube or Tape & Reel TSH82I SH82I SH82IY -40C to +125C -40C to +85C Temperature Range Package SOT23-5 Tape & Reel SOT23-5 (automotive grade level) SO-8 SO-8 (automotive grade level) SO-8 TSSOP8 Tape & Reel Tube or Tape & Reel K310 TSH80I SH80IY TSH81I SH81I Packaging Marking K303
2/23
TSH80-TSH81-TSH82
Absolute Maximum Ratings
1
Absolute Maximum Ratings
Table 1.
Symbol VCC Vid Vi Toper Tstg Tj Supply Voltage (1) Differential Input Voltage (2) Input Voltage (3) Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal resistance junction to case (4) SOT23-5 SO8 TSSOPO8 Thermal resistance junction to ambient area SOT23-5 SO8 TSSOPO8 Human Body Model
Key parameters and their absolute maximum ratings
Parameter Value 14 2 6 -40 to +85 -65 to +150 150 80 28 37 250 157 130 2 Unit V V V C C C
Rthjc
C/W
Rthja
C/W kV
ESD
1. All voltage values, except differential voltage are with respect to network ground terminal 2. Differential voltages are non-inverting input terminal with respect to the inverting terminal 3. The magnitude of input and output must never exceed VCC +0.3V 4. Short-circuits can cause excessive heating
Table 2.
Symbol VCC VIC Standby
Operating conditions
Parameter Supply Voltage Common Mode Input Voltage Range Value 4.5 to 12 VCC- to (V CC+ -1.1) (V CC-) to (VCC+) Unit V V V
3/23
Electrical Characteristics
TSH80-TSH81-TSH82
2
Electrical Characteristics
Table 3.
Symbol |Vio| Vio Iio Iib Cin ICC
VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25C (unless otherwise specified)
Parameter Input Offset Voltage Input Offset Voltage Drift vs. Temperature Input Offset Current Test Condition Tamb = 25C Tmin. < Tamb < Tmax. Tmin. < Tamb < Tmax. Tamb = 25C Tmin. < Tamb < Tmax. Tamb = 25C Tmin. < Tamb < Tmax. Min. Typ. 1.1 Max. 10 12 Unit mV V/C 3.5 5 15 20 A A pF 10.5 11.5 mA
3 0.1
Input Bias Current Input Capacitance Supply Current per Operator
6
0.3 Tamb = 25C Tmin. < Tamb < Tmax. +0.1CMR
Common Mode Rejection Ratio (Vic/Vio)
72 70 68 65
97
dB
SVR PSR
Supply Voltage Rejection Ratio (Vcc/Vio) Power Supply Rejection Ratio (Vcc/Vout)
75
dB dB
75
Avd
Large Signal Voltage Gain
75 70
84
dB
Io
Output Short Circuit Current Source
35 33
55 55
mA
28 28
4/23
TSH80-TSH81-TSH82
Table 3.
Symbol
Electrical Characteristics
VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25C (unless otherwise specified)
Parameter Test Condition Tamb =25C RL = 150 to GND RL = 600 to GND RL = 2k to GND RL = 10k to GND Min. Typ. Max. Unit
4.2
4.36 4.85 4.90 4.93 4.66 4.90 4.92 4.93
Voh
High Level Output Voltage
RL = 150 to 2.5V RL = 600 to 2.5V RL = 2k to 2.5V RL = 10k to 2.5V Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 2.5V Tamb =25C RL = 150 to GND RL = 600 to GND RL = 2k to GND RL = 10k to GND
4.5
V
4.1 4.4
48 54 55 56 220 105 76 61
150
Vol
Low Level Output Voltage
RL = 150 to 2.5V RL = 600 to 2.5V RL = 2k to 2.5V RL = 10k to 2.5V Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 2.5V
400 mV
200 450
GBP
Gain Bandwidth Product
F=10MHz AVCL =+11 AVCL =-10 AVCL =+1 RL=150 to 2.5V AVCL =+2 RL=150 // C L to 2.5V CL = 5pF CL = 30pF RL=150 // 30pF to 2.5V F=100kHz AVCL =+2, F=4MHz RL=150 // 30pF to 2.5V Vout=1Vpp Vout=2Vpp
65 55 87
MHz
Bw
Bandwidth @-3dB
MHz
SR
Slew Rate
60
104 105 40 11
V/s
m en
Phase Margin Equivalent Input Noise Voltage
nV/Hz
THD
Total Harmonic Distortion
-61 -54
dB
5/23
Electrical Characteristics
Table 3.
Symbol
TSH80-TSH81-TSH82
VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25C (unless otherwise specified)
Parameter Test Condition AVCL =+2, Vout=2Vpp RL=150 to 2.5V Fin1=180kHz, Fin2=280kHz spurious measurement @100kHz AVCL =+2, Vout=2Vpp RL=150 to 2.5V Fin1=180kHz, Fin2=280KHz spurious measurement @400kHz AVCL =+2, RL=150 to 2.5V F=4.5MHz, V out=2Vpp AVCL =+2, RL=150 to 2.5V F=4.5MHz, V out=2Vpp F=DC to 6MHz, A VCL=+2 F=1MHz to 10MHz Min. Typ. Max. Unit
IM2
Second order inter modulation product
-76
dBc
IM3
Third order inter modulation product
-68
dBc
G
Differential gain
0.5
%
Df
Differential phase
0.5
Gf
Gain Flatness
0.2 65
dB dB
Vo1/Vo2 Channel Separation
Table 4.
Symbol |Vio| Vio Iio Iib Cin ICC
VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25C (unless otherwise specified)
Parameter Input Offset Voltage Input Offset Voltage Drift vs. Temperature Input Offset Current Test Condition Tamb = 25C Tmin. < Tamb < T max. Tmin. < Tamb < T max. Tamb = 25C Tmin. < Tamb < T max. Tamb = 25C Tmin. < Tamb < T max. Min. Typ. 0.8 Max. 10 12 Unit mV V/C 3.5 5 15 20 A A pF 12.3 13.4 mA
2 0.1
Input Bias Current Input Capacitance Supply Current per Operator
6
0.7 Tamb = 25C Tmin. < Tamb < T max. -4.9 < Vic < 3.9V & Vout=GND Tamb = 25C Tmin. < Tamb < T max. Tamb = 25C Tmin. < Tamb < T max. 9.8
CMR
Common Mode Rejection Ratio (Vic/Vio)
81 72 71 65
106
dB
SVR
Supply Voltage Rejection Ratio (VCC/Vio)
77
dB
6/23
TSH80-TSH81-TSH82
Table 4.
Symbol PSR
Electrical Characteristics
VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25C (unless otherwise specified)
Parameter Power Supply Rejection Ratio (VCC/Vout) Test Condition Positive & Negative Rail RL=150 to GND Vout=-4 to +4 Tamb = 25C Tmin. < Tamb < T max. Tamb=25C Vid=+1, V out to 1.5V Vid=-1, Vout to 1.5V |Source| Sink Tmin. < Tamb < T max. Vid=+1, V out to 1.5V Vid=-1, Vout to 1.5V |Source| Sink Tamb=25C RL = 150 to GND RL = 600 to GND RL = 2k to GND RL = 10k to GND Tmin. < Tamb < T max. RL = 150 to GND Tamb=25C RL = 150 to GND RL = 600 to GND RL = 2k to GND RL = 10k to GND Tmin. < Tamb < T max. RL = 150 to GND Min. Typ. 75 Max. Unit dB
Avd
Large Signal Voltage Gain
75 70
86
dB
Io
Output Short Circuit Current Source
35 30
55 55
mA
28 28
4.2
Voh
High Level Output Voltage
4.36 4.85 4.9 4.93
V
4.1
Vol
Low Level Output Voltage
-4.63 -4.86 -4.9 -4.93
-4.4 mV
-4.3
GBP
Gain Bandwidth Product
F=10MHz AVCL=+11 AVCL=-10 AVCL=+1 RL=150 // 30pF to GND AVCL=+2 RL=150 // CL to GND CL = 5pF CL = 30pF RL=150 to gnd
65 55 100
MHz
Bw
Bandwidth @-3dB
MHz
SR
Slew Rate
68
117 118 40
V/s
m
Phase Margin
7/23
Electrical Characteristics
Table 4.
Symbol en
TSH80-TSH81-TSH82
VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25C (unless otherwise specified)
Parameter Equivalent Input Noise Voltage Test Condition F=100kHz AVCL=+2, F=4MHz RL=150 // 30pF to gnd Vout=1Vpp Vout=2Vpp AVCL=+2, Vout=2Vpp RL=150 to gnd Fin1=180kHz, Fin2=280KHz spurious measurement @100kHz AVCL=+2, Vout=2Vpp RL=150 to gnd Fin1=180kHz, Fin2=280KHz spurious measurement @400kHz AVCL=+2, R L=150 to gnd F=4.5MHz, Vout=2Vpp AVCL=+2, R L=150 to gnd F=4.5MHz, Vout=2Vpp F=DC to 6MHz, AVCL =+2 F=1MHz to 10MHz Min. Typ. 11 Max. Unit nV/ Hz
THD
Total Harmonic Distortion
-61 -54
dB
IM2
Second order inter modulation product
-76
dBc
IM3
Third order inter modulation product
-68
dBc
G Df Gf
Differential gain
0.5
%
Differential phase Gain Flatness
0.5 0.2 65
dB dB
Vo1/Vo2 Channel Separation
8/23
TSH80-TSH81-TSH82
Table 5.
Electrical Characteristics
Standby mode VCC+, VCC-, Tamb = 25C (unless otherwise specified)
Parameter Standby Low Level Standby High Level pin 8 (TSH81) to VCCRout Cout Test Condition Min. VCC (V CC- +2) 20 10 17 2 Down to ICC SBY = 10A 10 Typ. Max. (VCC- +0.8) (V CC+) 55 Unit V V A M pF s s
Symbol Vlow Vhigh
Current Consumption per ICC SBY Operator when STANDBY is Active Zout Ton Toff Output Impedance (Rout// Cout) Time from Standby Mode to Active Mode Time from Active Mode to Standby Mode
TSH81 STANDBY CONTROL pin 8 (SBY) Vlow Vhigh
OPERATOR STATUS Standby Active
9/23
Electrical Characteristics
Closed loop gain & phase vs. frequency Gain=+2, Vcc= 2.5V, RL=150, Tamb = 25C
10 200
TSH80-TSH81-TSH82
Figure 2. Overshoot function of output capacitance Gain=+2, Vcc= 2.5V, Tamb = 25C
10
Figure 1.
5
150//33pF
Gain
100
5
150//22pF
Gain (dB)
Phase ()
0 -5
Gain (dB)
0
150//10pF
150
0
Phase
-100
-10
-15 1E+4
-200 1E+5 1E+6 1E+7 1E+8 1E+9
-5 1E+6
1E+7
1E+8
1E+9
Frequency (Hz)
Frequency (Hz)
Closed loop gain & phase vs. frequency Gain=-10, Vcc= 2.5V, RL=150, Tamb = 25C
30 200
Figure 3.
Figure 4.
Closed loop gain & phase vs. frequency Gain=+11, Vcc= 2.5V, R L=150, Tamb = 25C
30 0
Phase
20
150
Phase
20
100
Gain (dB)
Phase ()
Gain
10 50
Gain (dB)
10
0 0 -50
-100 0
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-100 1E+9
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-150 1E+9
Frequency (Hz)
Frequency (Hz)
Large signal measurement - positive Figure 6. Large signal measurement slew rate negative slew rate Gain=2,Vcc=2.5V,ZL=150//5.6pF,Vin=400mVpk Gain=2,Vcc=2.5V,ZL=150//5.6pF,Vin=400mVpk
3
3
Figure 5.
2
2
1
1
Vout (V)
0
Vout (V)
0
-1
-1
-2
-2
-3 0 10 20 30 40 50 60 70 80
-3 0 10 20 30 40 50 60 70
Time (ns)
Time (ns)
10/23
Phase ()
Gain
-50
TSH80-TSH81-TSH82
Figure 7. Small signal measurement - rise time Gain=2,Vcc=2.5V,Zl=150,Vin=400mVpk
0.06
Electrical Characteristics
Figure 8. Small signal measurement - fall time Gain=2,Vcc=2.5V,Zl=150,Vin=400mVpk
0.06
0.04
0.04
0.02
0.02
Vin, Vout (V)
Vin Vout (V)
Vout Vin
0
0
Vout Vin
-0.02
-0.02
-0.04
-0.04
-0.06 0 10 20 30 40 50 60
-0.06 0 10 20 30 40 50 60
Time (ns)
Time (ns)
Channel separation (Xtalk) vs. frequency Measurement configuration: Xtalk=20log(V0/V1)
VIN
49.9
Figure 9.
Figure 10. Channel separation (Xtalk) vs. frequency Gain=+11, Vcc=2.5V, ZL=150//27pF
-20
+ + -150
-30
V1
Xtalk (dB)
-40
4/1output
-50
100 1k
3/1output
-60 -70 -80
2/1output
+ 49.9 100 1k 150
-90
VO
-100 -110 1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 11. Equivalent noise voltage Gain=100, Vcc=2.5V, No load
30
+ _
10k 100
Figure 12. Maximum output swing Gain=11, Vcc=2.5V, RL=150
3
25
2
Vout
1
en (nV/Hz)
20
Vin, Vout (V)
Vin
0
15
-1
10
-2
5 0.1 1 10 100 1000
-3 0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Frequency (kHz)
Time (ms)
11/23
Inter Modulation Products
TSH80-TSH81-TSH82
3
Inter Modulation Products
The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations.
Figure 13. Standby mode - Ton, Toff Vcc= 2.5V, Open Loop
3 2 1 0 -1 -2
Figure 14. Group delay Gain=2, Vcc= 2.5V, ZL=150//27pF, Tamb = 25C
Vin
Vin, Vout (V)
Gain
Vout
Group Delay 5.32ns
-3 0
Ton
2E-6
Standby
4E-6 6E-6
Toff
8E-6 1E-5
Time (s)
Figure 15. Third order inter modulation Gain=2, Vcc= 2.5V, ZL=150//27pF, Tamb = 25C
0 -10 -20 -30
IM3 (dBc)
-40 -50
740kHz 80kHz
-60 -70 -80 -90 -100 0 1 2 3 4
380kHz
640kHz
Vout peak(V)
12/23
TSH80-TSH81-TSH82
Figure 16. Closed loop gain & phase vs. frequency Gain=+2, Vcc= 5V, RL=150, Tamb = 25C
10 200
Inter Modulation Products
Figure 17. Overshoot function of output capacitance Gain=+2, Vcc= 5V, Tamb = 25C
10
5
150//33pF
Gain
100
5
150//22pF
Gain (dB)
Phase ()
0 -5
Gain (dB)
0
150//10pF
150
0
Phase
-100 -10
-15 1E+4
1E+5
1E+6
1E+7
1E+8
-200 1E+9
-5 1E+6
1E+7
1E+8
1E+9
Frequency (Hz)
Frequency (Hz)
Figure 18. Closed loop gain & phase vs. frequency Gain=-10, Vcc= 5V, RL=150, Tamb = 25C
30 200
Figure 19. Closed loop gain & phase vs. frequency Gain=+11, Vcc= 5V, RL=150, Tamb = 25C
30 0
Phase
20
Phase
150
20 -50
Gain (dB)
Phase ()
Gain
10
Gain (dB)
10
50 0 0
-100 0
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-50 1E+9
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-150 1E+9
Frequency (Hz)
Frequency (Hz)
Figure 20. Large signal measurement - positive Figure 21. Large signal measurement slew rate negative slew rate Gain=2,Vcc=5V,ZL=150//5.6pF,Vin=400mVpk Gain=2,Vcc=5V,ZL=150//5.6pF,Vin=400mVpk
5 4 3 2
5 4 3 2
Vout (V)
0 -1 -2 -3 -4 -5 0 20 40 60 80 100
Vout (V)
1
1 0 -1 -2 -3 -4 -5 0 20 40 60 80 100
Time (ns)
Time (ns)
Phase ()
100
Gain
13/23
Inter Modulation Products
Figure 22. Small signal measurement - rise time Gain=2,Vcc=5V,Zl=150,Vin=400mVpk
0.06
TSH80-TSH81-TSH82
Figure 23. Small signal measurement - fall time Gain=2,Vcc=5V,Zl=150,Vin=400mVpk
0.06
0.04
0.04
0.02
0.02
Vin, Vout (V)
Vin, Vout (V)
Vout
0
0
Vout Vin
Vin
-0.02
-0.02
-0.04
-0.04
-0.06 0 10 20 30 40 50 60
-0.06 0 10 20 30 40 50 60
Time (ns)
Time (ns)
Figure 24. Channel separation (Xtalk) vs. frequency Measurement configuration: Xtalk=20log(V0/V1)
VIN
49.9
Figure 25. Channel separation (Xtalk) vs. frequency Gain=+11, Vcc=5V, ZL=150//27pF
-20
+ + -150
-30
V1
Xtalk (dB)
-40 -50
4/1output 3/1output
100 1k
-60 -70 -80
49.9
+ 150
2/1output
-90
VO
-100 -110 1E+4
100 1k
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 26. Equivalent noise voltage Gain=100, Vcc=5V, No load
30
Figure 27. Maximum output swing Gain=11, Vcc=5V, RL=150
5 4
25
+ _
10k
3 2
Vout
Vin, Vout (V)
100
en (nV/Hz)
20
1 0 -1 -2
Vin
15
10
-3 -4
5 0.1 1 10 100 1000
-5 0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Frequency (kHz)
Time (ms)
14/23
TSH80-TSH81-TSH82
Inter Modulation Products
The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. Figure 28. Standby mode - Ton, Toff Vcc= 5V, Open Loop
Vin
5
Figure 29. Group delay Gain=2, Vcc= 5V, ZL=150//27pF, Tamb = 25C
Vin, Vout (V)
Vout
0
Gain
Group Delay
-5
5.1ns
Ton
0 2E-6
Standby
4E-6 6E-6
Toff
8E-6
Time (s)
Figure 30. Third order inter modulation Gain=2, Vcc= 5V, ZL=150//27pF, Tamb = 25C
0 -10 -20 -30
IM3 (dBc)
-40
80kHz
-50 -60 -70 -80 -90
740kHz
640kHz
-100 0 1 2 3
380kHz
4
Vout peak(V)
15/23
Testing Conditions
TSH80-TSH81-TSH82
4
4.1
Testing Conditions
Layout precautions:
To use the TSH8X circuits in the best manner at high frequencies, some precautions have to be taken for power supplies:
First of all, the implementation of a proper ground plane in both sides of the PCB is mandatory for high speed circuit applications to provide low inductance and low resistance common return. Power supply bypass capacitors (4.7uF and ceramic 100pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and the positive pins. Proper termination of all inputs and outputs must be in accordance with output termination resistors; then the amplifier load will be only resistive and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for op amp inputs and outputs in order to decrease parasitic capacitance and inductance.

For lower gain application, attention should be paid not to use large feedback resistance (>1k) to reduce time constant with parasitic capacitances. Choose component sizes as small as possible (SMD). Finally, on output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance the closest to the output pin to minimize its influence.
Figure 31. CCIR330 video line
4.2
Maximum input level:
The input level must not exceed the following values:

Negative peak: must be greater than -Vcc+400mV. Positive peak value: must be lower than +Vcc-400mV.
The electrical characteristics show the influence of the load on this parameter.
16/23
TSH80-TSH81-TSH82
Testing Conditions
4.3
Video capabilities:
To characterize the differential phase and differential gain a CCIR330 video line is used. The video line contains 5 (flat) levels of luma on which is superimposed chroma signal. (the first level contains no luma). The luma gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the color of the signal. Differential phase (respectively differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. They represent the ability to uniformly process the high frequency information at all luminance levels. When differential gain is present, color saturation is not correctly reproduced. The input generator is the Rhode & Schwarz CCVS. The output measurement is done by the Rhode and Schwarz VSA. Figure 32. Measurement on Rhode and Schwarz VSA
Table 6.
Video results
Value (Vcc=2.5V) Value (Vcc=5V) Unit
Parameter
Lum NL Lum NL Step 1 Lum NL Step 2 Lum NL Step 3 Lum NL Step 4 Lum NL Step 5 Diff Gain pos Diff Gain neg Diff Gain pp Diff Gain Step1 Diff Gain Step2 Diff Gain Step3 Diff Gain Step4 Diff Gain Step5 Diff Phase pos Diff Phase neg Diff Phase pp Diff Phase Step1 Diff Phase Step2 Diff Phase Step3 Diff Phase Step4 Diff Phase Step5
0.1 100 100 99.9 99.9 99.9 0 -0.7 0.7 -0.5 -0.7 -0.3 -0.1 -0.4 0 -0.2 0.2 -0.2 -0.1 -0.1 0 -0.2
0.3 100 99.9 99.8 99.9 99.7 0 -0.6 0.6 -0.3 -0.6 -0.5 -0.3 -0.5 0.1 -0.4 0.5 -0.4 -0.4 -0.3 0.1 -0.1
% % % % % % % % % % % % % % deg deg deg deg deg deg deg deg
17/23
Precautions on Asymmetrical Supply Operation
TSH80-TSH81-TSH82
5
Precautions on Asymmetrical Supply Operation
The TSH8X can be used either with a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+Vcc/2). This bias network must be carefully designed, in order to reject any noise present on the supply rail. As the bias current is 15uA, you must carefully choose the resistance R1 not to introduce an offset mismatch at the amplifier inputs.
IN Cin + R1 R2 R3 C1 Vcc+ C3 C2 R4 -
Cout OUT
R5
Cf
RL
R1=10k will be convenient. C1, C2, C3 are bypass capacitors from perturbation on Vcc as well as for the input and output signals. We choose C1=100nF and C2=C3=100uF. R2, R3 are such that the current through them must be superior to 100 times the bias current. So, we take R2=R3=4.7k. Cin, as Cout are chosen to filter the DC signal by the low pass filters (R1,Cin) and (Rout, Cout). By taking R1=10k, RL=150, and Cin=2uF, Cout=220uF we provide a cutoff frequency below 10Hz. Figure 33. Use of the TSH8x in gain = -1 configuration
Cf 1k IN Cin 1k Vcc+ R2 R3 C1 C2 C3
+
Cout OUT RL
R1
Some precautions have to be added, specially for low power supply application. A feedback capacitance Cf should be added for better stability. The table summarizes the impact of the capacitance Cf on the phase margin of the circuit.
18/23
TSH80-TSH81-TSH82
Table 7.
Precautions on Asymmetrical Supply Operation
Capacitance Cf on the phase margin of the circuit
Cf (pF) Vcc=1.5V Vcc=2.5V Vcc=5V Unit
Parameter
Phase Margin f-3dB Phase Margin f-3dB Phase Margin f-3dB Phase Margin f-3dB
0 5.6 22 33
28 40 30 40 37 37 48 33.7
43 39.3 43 39.3 52 34 65 30.7
56 38.3 56 38.3 67 32 78 27.6
deg MHz deg MHz deg MHz deg MHz
Figure 34. Example of a video application
Vcc/2 IN Ce Rb1 AOP1 + R2 R1 Vcc/2 Cf Vcc/2 NTSC R7 C7 A2 LPF2 R8 V1 R3 C3 V2 A1 LPF1 PAL V3 R4 Vcc/2 C4 Rb1
Re
+ -
AOP2
R6 R5 Cf Standby Vcc/2 C8 Rb1
V4
Rout Cout OUT RL
+ AOP3 R10
Vcc/2 R9
Cf Standby
This example shows a possible application of the TSH8X circuit. Here, you can multiplex the channels for the different standard PAL, NTSC as you filter for the different bands; the video signal can be filtered with two different cutoff frequencies, corresponding to a PAL encoded signal (LPF1) or a NTSC signal (LPF2). You can multiplex input signals, as the outputs are in high impedance state in standby mode. This enables you, to use a PAL filter as the Standby mode is active and to use the NTSC filter otherwise. The video application requires 1Vpeak at input and output. Calculation of components: A decoupling capacitor is provided to cutoff the frequencies below 10Hz according I bias. Hence Ce=10uF, with Rb1=10k. At the output, Cout=220uF. The AOP1 is in 6dB configuration for the adaptation bridge. R1=R2=1k,V1=2Vpk, V2=1Vpk For the PAL communication, we need a low pass filtering. The load resistance R4 is function of the output resistance of the filter.V3=V2/A1 where A1 is the attenuation factor of the filter LPF1. To compensate the filter insertion loss, we add an additional factor to the gain of the 2nd amplifier AOP2. For example, for an attenuation of 3dB, we choose R5=300 and R6=1k. We have V4=2Vpk and Vout=1Vpk. The calculation of the parameters R7, C7, R8, C8, R9, R10 will be exactly the same
19/23
Package Mechanical Data
TSH80-TSH81-TSH82
6
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK(R) packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
6.1
SO-8 Package
SO-8 MECHANICAL DATA
DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8 (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157
0016023/C
20/23
TSH80-TSH81-TSH82
Package Mechanical Data
6.2
TSSOP8 Package
TSSOP8 MECHANICAL DATA
mm. DIM. MIN. A A1 A2 b c D E E1 e K L L1 0 0.45 0.60 1 0.05 0.80 0.19 0.09 2.90 6.20 4.30 3.00 6.40 4.40 0.65 8 0.75 0 0.018 0.024 0.039 1.00 TYP MAX. 1.2 0.15 1.05 0.30 0.20 3.10 6.60 4.50 0.002 0.031 0.007 0.004 0.114 0.244 0.169 0.118 0.252 0.173 0.0256 8 0.030 0.039 MIN. TYP. MAX. 0.047 0.006 0.041 0.012 0.008 0.122 0.260 0.177 inch
0079397/D
21/23
Package Mechanical Data
TSH80-TSH81-TSH82
6.3
SOT23-5 Package
SOT23-5L MECHANICAL DATA
mm. DIM. MIN. A A1 A2 b C D E E1 e e1 L 0.35 0.90 0.00 0.90 0.35 0.09 2.80 2.60 1.50 0 .95 1.9 0.55 13.7 TYP MAX. 1.45 0.15 1.30 0.50 0.20 3.00 3.00 1.75 MIN. 35.4 0.0 35.4 13.7 3.5 110.2 102.3 59.0 37.4 74.8 21.6 TYP. MAX. 57.1 5.9 51.2 19.7 7.8 118.1 118.1 68.8 mils
22/23
TSH80-TSH81-TSH82
Revision History
7
Revision History
Date Revision Changes
Feb. 2003 Aug. 2005
1 2
First Release PPAP references inserted in the datasheet see Table : Order Codes on page 2.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
23/23


▲Up To Search▲   

 
Price & Availability of SH81I

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X